
大模型垂直领域低算力迁移:微调、部署与优化
网店购买
内容简介
内容简介本书是一本深度探讨大模型在低算力环境下实现迁移与微调的实践指南,并深入讲解了大模型的部署与优化策略。书中结合多个垂直领域的应用场景,从理论到技术实现,全程详尽讲解了如何应对大模型在行业落地中的技术挑战,帮助读者逐步掌握大模型的迁移与微调核心技术。通过阅读本书,你将能够: (1)全面理解垂直领域迁移方式与技术选型 深入了解开源大模型向垂直领域迁移的核心方式,包括提示工程、检索增强生成、参数高效微调与全参数微调等技术路径,并灵活应对低算力场景下的迁移技术挑战。 (2)快速获取高质量领域数据的低成本方案 学习通过指令自举、无监督标注、自我策展等方法构建高质量数据集,同时掌握数据清洗、去重和质量过滤等关键技术,显著降低数据获取成本。 (3) 掌握低算力环境下的训练与推理优化技术 全面掌握低算力训练与微调方法(如LoRA和QLoRA),并结合推理优化技术(如量化、剪枝和模型编译),高效实现低成本的大模型训练与推理。 (4)精通大模型的生产环境部署与优化 系统学习生产环境中大模型的部署方案,涵盖服务器推理加速、分布式集群架构和多平台适配技术,确保模型在实际应用中的高效、安全运行。无论你是大模型开发者、人工智能研究人员,还是对垂直领域AI应用感兴趣的行业专家,本书都将带你深入大模型的核心领域,提供从构建、优化到部署的全流程指导,助你掌握这一前沿技术的实践精髓。
作者简介
程戈,博士生导师,湘潭大学技术转移中心副主任,湘潭市京东智能城市与大数据研究院副院长,湘潭大学计算机学院.网络空间学院教授,CCF计算法学会执委,湖南省知识产权保护专家,湖南省知识产权行政保护技术调查官。2011年获得华中科技大学计算机系统结构专业的工学博士学位。研究方面,主要从事知识表示学习与内容安全问题研究,并逐渐聚焦于采用类似Chatgpt大规模语言模型解决人工智能在司法行业中应用的相关场景。近年来,主持国家重点研发子课题2项,湖南省重点研发1项,国家自科基金1项,博士点基金1项,参与其他国家与省部级项目10余项;在国内外重要SSCI/SCI/EI学术期刊和会议发表论文 30 多篇;申请发明专利20多项,获得发明专利授权 20多项,软件著作权10多项。社会服务方面,产学研合作求真务实,在北京捷通华声科技有限公司等6家企业担任技术顾问,主持参与横向课题10余项,多项成果转化应用创效,其中语音识别的单项成果广泛应用于北京捷通华声科技有限公司的车载导航系统中。担任潇湘大数据研究院研究员,大数据与智慧司法研究中心研究员,省创新创业大赛的评委。