图书

从空间曲线到高斯-博内定理

网店购买

内容简介

       《从空间曲线到高斯-博内定理》共分四个部分,十个章节,是论述空间曲线和曲面理论的一本入门读物。
  第一部分阐明了本书使用的数学工具:向量的代数运算以及变向量的求导运算。第二部分讨论了曲线的基本概念,引入了弧长参数,也讨论了描述空间曲线变化的曲率与挠率这两个几何量。最后,证明了弗雷内-塞雷公式,并以此证明了曲线的基本定理:曲线的形状是由它的曲率与挠率决定的。第三部分主要讨论的是曲面上的三个基本形式以及曲面上的一些曲率。同时也讨论了曲面上的一些方程式,引入了黎曼曲率张量,并以此证明了高斯的“最了不起定理”。
  第四部分讨论了曲面上的测地线,测地方程,以及欧拉公式,罗德里格斯公式,与恩尼珀定理等。在本书的最后一章——第十章中,证明了计算测地曲率的刘维尔公式,并用它证明了闭曲面的高斯-博内定理。据此,引入闭曲面的欧拉示性数,证明它是一个拓扑不变量。

作者简介

       冯承天,著有《从一元一次方程到伽罗瓦理论》《从求解多项式方程到阿贝尔不可能性定理——细说五次方程无求根公式》《从代数基本定理到超越数——一段经典数学的奇幻之旅》;译有《对称》、《寻觅基元:探索物质的终极结构》、《怎样解题:数学思维的新方法》、《恋爱中的爱因斯坦:科学罗曼史》等。