
深度学习:基础与概念
内容简介
本书全面且深入地呈现了深度学习领域的知识体系,系统梳理了该领域的核心知识,阐述了深度学习的关键概念、基础理论及核心思想,剖析了当代深度学习架构与技术。全书共 20 章。本书首先介绍深度学习的发展历程、基本概念及其在诸多领域(如医疗诊断、图像合成等)产生的深远影响;继而深入探讨支撑深度学习的数学原理,包括概率、标准分布等;在网络模型方面,从单层网络逐步深入到多层网络、深度神经网络,详细讲解其结构、功能、优化方法及其在分类、回归等任务中的应用,同时涵盖卷积网络、Transformer 等前沿架构及其在计算机视觉、自然语言处理等领域的独特作用。本书还对正则化、采样、潜变量、生成对抗网络、自编码器、扩散模型等关键技术展开深入分析,阐释其原理、算法流程及实际应用场景。对于机器学习领域的新手,本书是全面且系统的入门教材,可引领其踏入深度学
习的知识殿堂;对于机器学习领域从业者,本书是深化专业知识、紧跟技术前沿的有力工具;对于相关专业学生,本书是学习深度学习课程、开展学术研究的优质参考资料。无论是理论学习、实践应用还是学术研究,本书都是读者在深度学习领域探索与前行的重要指引。
作者简介
克里斯托弗·M. 毕晓普(Christopher M. Bishop) 微软公司技术研究员、微软研究 院 科 学 智 能 中 心(Microsoft Research AI4Science)负责人。剑桥达尔文学院院士、英国皇家工程院院士、爱丁堡皇家学会院士和伦敦皇家学会院士。曾出版经典著作《模式识别与机器学习》(Pattern Recognition and Machine Learning)。 休·毕晓普(Hugh Bishop) Wayve 公司(伦敦一家基于端到端深度学习的自动驾驶公司)应用科学家,负责设计和训练深度神经网络。拥有剑桥大学工程系机器学习和机器智能专业硕士 学位、杜伦大学计算机科学工程学硕士学位。